Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 23(1): 629, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38062351

ABSTRACT

Chromium (Cr) toxicity significantly threatens sunflower growth and productivity by interfering with enzymatic activity and generating reactive oxygen species (ROS). Zinc quantum dot biochar (ZQDB) and arbuscular mycorrhizal fungi (AMF) have become popular to resolve this issue. AMF can facilitate root growth, while biochar tends to minimize Cr mobility in soil. The current study aimed to explore AMF and ZQDB combined effects on sunflower plants in response to Cr toxicity. Four treatments were applied, i.e. NoAMF + NoZQDB, AMF + 0.40%ZQDB, AMF + 0.80%ZQDB, and AMF + 1.20%ZQDB, under different stress levels of Cr, i.e. no Cr (control), 150 and 200 mg Cr/kg soil. Results showed that AMF + 1.20%ZQDB was the treatment that caused the greatest improvement in plant height, stem diameter, head diameter, number of leaves per plant, achenes per head, 1000 achenes weight, achene yield, biological yield, transpiration rate, stomatal conductance, chlorophyll content and oleic acid, relative to the condition NoAMF + No ZQDB at 200 mg Cr/kg soil. A significant decline in peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) while improvement in ascorbate peroxidase (APx), oil content, and protein content further supported the effectiveness of AMF + 1.20%ZQDB against Cr toxicity. Our results suggest that the treatment AMF + 1.20%ZQDB can efficiently alleviate Cr stress in sunflowers.


Subject(s)
Helianthus , Mycorrhizae , Quantum Dots , Mycorrhizae/physiology , Antioxidants/metabolism , Helianthus/metabolism , Chromium/toxicity , Chromium/metabolism , Soil , Plant Roots/metabolism
2.
Rev Sci Instrum ; 92(4): 045007, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243476

ABSTRACT

This research paper presents design and analysis of the multi-jaw microgripper that can manipulate microbiological organisms and species, cell probing and measurement, biomedical sample sorting, and preparation. Four jaws, actuated with a single thermal chevron actuator, can grip microbiological species ranging from 300 to 700 µm, 1 to 340 µm, 100 µm pool, and 1 to 120 µm spongy cells, respectively. Jaws are designed in such a way that they can grip regular, irregular, and spongy shaped biological species and their organelles. Parametric analysis of the microgripper exhibited that at 10 V, the efficiency of the thermal actuator is at maximum with respect to displacement, force, and temperature. To enhance displacement to voltage ratio and increase the energy efficiency, a class 3 lever mechanism has been incorporated. The amplification factors at four jaws are 17.21, 13.82, 4.02, and 4.93, respectively. For controlled application of the force to microspecies, two electrostatic force sensors have been amalgamated with jaws having capacitive sensitivities of 1.59 nf/µm, 1.91 nf/µm, 17 nf/µm, and 14.5 nf/µm, respectively. Electrothermal, static, and electrostatic analyses have been carried out with the finite element methods based software IntelliSuite®. Stress magnitudes are within the limits of structural integrity of silicon having a factor of safety 2.5. Thermal analysis revealed that at a differential voltage of 10 V, the maximum temperature goes up to 425 °C. Buckling analysis results depicted that the critical load for the thermal actuator is 241 µN with the buckling load factor greater than unity. This paper focuses on microbiological applications only; however, the designed microgripper can be used to manipulate micro-objects, microstructures, microelectronics parts, and micro assembly.


Subject(s)
Mechanical Phenomena , Silicon , Jaw , Static Electricity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...